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Based on Different-Width Split-Finger SPUDT
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Abstract—A new design concept of a single-phase unidirectional i A i
transducer (SPUDT) has been investigated in this paper. The con- | |
cept has been realized by using a newly developed different-width
split-finger—SPUDT structure, in which the adjacent electrode fin- ! '
gers are given different widths. A symmetrical radiation conduc- H !
tance is obtained by adjusting the electrode finger positions. Com-
puter simulations have confirmed that the electricall/Q factor
and the directivity have a tradeoff relationship with regard to the
finger-width ratio, depending on the metallization thickness used.
From the simulation results, the optimum finger-width ratio for
achieving a low insertion loss has been obtained. An experimental
filter was constructed, which shows good performance, with the
insertion loss improved by 1 dB when compared to a conventional I
electrode-width-controlled—SPUDT filter on an ST-cut quartz sub- !
strate.
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I. INTRODUCTION Fig. 1. Configuration of the EWC-SPUDT.

R ECENTLY, the single-phase unidirectional transducegell known that this structure has a unidirectional performance
(SPUDT) technique has been developed and is Nng#d symmetrical radiation conductance since there &
widely used in surface acoustic wave (SAW) filter designs fgshase difference between the center of the excitation and

various code-division multiple-access (CDMA) applicationgenter of reflection [5], [8]. An analysis of the electricglQ
Filters for such applications need to have good performanggtor for application to the passband characteristics of the
characteristics, such as a low insertion loss, a wide passbhandFyDT has been reported [9], [10]. The effective electro-
high rejection near passband, flat passband characteristics, gieéhanical coupling constant has been observed to be related
need to exhibit a miniaturized size. to the electricall /@ factor [11]. However, there has been no
The performance of filters using a bidirectional transducekajuation reported for the insertion loss of the SPUDT from
is degraded by the triple-transit echo, and the insertion lossig point-of-view where both the electricajQ factor and
also increased by bidirectional propagation loss. The SPUIrectivity are considered as a function of the finger-width ratio.
technique can suppress the triple-transit echo, using reflectiofis ratio is defined as the width of the wide finger divided by
within the transducers, and can improve the insertion I0g§$at of the narrow finger.
OWing to its inherent unidirectional d|reCt|V|ty [1]—[3] In the In this paper, a new design Concept for improving the
design of the SPUDT, the localized centers of excitation aggdeoff relation between the electricaf factor and the
displaced byA/8 from the localized centers of reflection.djrectivity of a different-width split-finger (DWSF)-SPUDT on
Various SPUDT structures such as the distributed acouskig sT-cut quartz substrate is studied. The DWSF-SPUDT has
reflection transducer (DART) SPUDT [4], electrode-width confyr electrodes per wavelength. The adjacent electrode fingers
trolled (EWC)-SPUDT [5], Hunsinger-geometry SPUDT [6]have different widths. The filter performance can be controlled
dithered SPUDT (DSPUDT) [7] have been already reportegy the finger-width ratio. The electrode finger positions may
Fig. 1 shows the structure of the EWC-SPUDT. It consists gk adjusted to obtain a symmetrical radiation conductance.
three electrode fingers per wavelength, with okl width The filters have then been characterized as a function of the
electrode and two\/8 width electrodes in a unit length. It is finger-width ratio and the metallization thickness. For the
DWSF-SPUDT, the insertion loss is analyzed incorporating
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The structure of the proposed the DWSF-SPUDT will be 04
presented first. The adjustment method of electrode finger 02
positions will then be explained. Subsequently, we compare |
the electricall/@ factor and the directivity of the DWSF 0
SPUDT with that of a conventional EWC-SPUDT. We then 1.0 1.5 2.0 2.5 30
present optimization results for the finger-width ratio carried 1211
out by computer simulations. Finally, the insertion loss of an
experimental filter will be reported. Fig. 4. «, characteristics as a function of the finger-width ratio.
Il. CONFIGURATION OF THEDWSF—SPUDT RKTER 1.4%, and with the number of electrode finger pairs equal to
. i 100. The sum of both finger width&.{ 4+ L2) was\/4, and the
A. Configuration of the DWSF-SPUDT finger-width ratio ¢.2/L1) was 3.0. Here, the DWSF-SPUDT

Fig. 2 shows the structure of the DWSF-SPUDT [12]. Thef «g = 1.00 means Hunsinger-geometry SPUDT. The ver-
DWSF-SPUDT has four electrode fingers per wavelength. Theal axis is normalized to the maximum value of the radiation
adjacent electrode fingers have different widths, respectivetppnductance. In the Hunsinger-geometry SPU&,= 1.00,

The wide finger £2) and the narrow fingeri(1) are placed al- the center-to-center spacingig4, and a radiation conductance
ternatively. The directivity is obtained by adjusting the phasgas asymmetrical. In the DWSF-SPUDT, a symmetrical radi-
difference between the center of excitation and the center of sgion conductance can be obtained by usigg= 0.44. Fig. 4
flection. The filter performance is controlled by the finger-widtlshows thex, characteristics as a function of the finger-width
ratio (L2/L1), defined as the width of the wide finger divided byratio. The choice ofy, value has introduced two peaks on both
that of the narrow finger. In this figure, the DWSF-SPUDT witlsides of the center frequency in the radiation conductance with
L2/1.1 = 1.0 contains\/8-width bidirectional transducers, the same level. The, value decreases with the finger-width
which is generally called a “split-finger” arrangement. In theatio. The center-to-center spacing) between the wide and
DWSF-SPUDT, the electricdl/@ factor is controlled by the narrow finger is changed with respect to the finger-width ratio,
finger-width ratio. Furthermore, the finger-width ratio changeas shown in (1). IiL1 + L2 = A/4 andL2/L1 = 3.0, the Dy

the reflection in the electrodes and, therefore, the directivity epacing is aboud.32), usingay = 0.44 in Fig. 4. Therefore,

the SPUDT can be adjusted by varying this parameter. the phase difference of the DWSF-SPUDT can be adjusted by

The /8 phase difference between the center of excitation anding just only one parameter, i.e., thgvalue, as follows:
th_e _center of refl_ection of the SP_UDT is very important for ob- A L14L2  agx A
taining symmetrical characteristics for the filter responses [8]. Dy = 5~ 5 -~
In the DWSF-SPUDT, the phase difference is changed by the
finger-width ratio, thus, an adjustment of the electrode finger o o
positions is required to obtain symmetrical filter characteristicE: Combination of the DWSF-SPUDT aag Split Fingers
When designing the DWSF-SPUDT, the finger position param- A/8 split fingers are incorporated into the DWSF-SPUDT in
eter«, can be varied to give a symmetrical radiation conduorder to achieve a practical filter design. The center of excita-
tance, as shown in Fig. 3. This figure shows the radiation cotien of the DWSF-SPUDT has to be consistent with that of the
ductance ) with a9 = 0.44, as compared witkvg = 1.00, A/8 split fingers in every\/2 periodic space. In this case, two
for a design with a normalized metallization thicknesgX) of ~ finger position parameters, i.ev,and 3, as defined in Fig. 5,

@)
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have to be introduced. Fig. 5 shows the structure of the combi- e

nation of the DWSF-SPUDT and the'8 split fingers. Thex- ®)
and thej3-parameters in Fig. 5 are the position parameters of _ o o
the narrow and wide fingers, respectively. Thend s values £, & (Normelees ‘saien, conorse o te, conbaler o e
we have chosen have introduced two peaks on both sidesQf ot — 5 = o, = 0.44 and (b) in the case af = 0.17 andj = 0.71.
the center frequency in the radiation conductance with the same
level. Fig. 6 shows the radiation conductance of the combination
of the DWSF-SPUDT and th&/8 split fingers. The number —o— aath/A=1.0%
of the DWSF—SPUDT pairs is 100 and the number of X/i@ -+ - BathA=1.0%
split-finger pairs is 50. Fig. 6(a) shows the radiation conduc- —:_ o athA=14%
4 . ) " - - BathA=1.4%
tance without the adjustment of the electrode finger positions. —s— cat h/A=1.8%
Here, the normalized metallization thicknesg ) is 1.4%, and - -« - BathA=1.8%
L2/L1 = 3.0, L1+ L2 = A/4. The« and s values are the 10 0
same in the case of the DWSF-SPUDT alone. This means that (8-,
a = = ap = 0.44. The radiation conductance is asym- NN TR
metrical because of nonperiodicity between the centers of the 0.8 YU : _
excitation between the DWSF-SPUDT and %y split fin- ’ \ e T ca. ]
gers. Fig. 6(b) shows the variation of the radiation conductance :
with adjustment of the electrode finger positians= 0.17 and \L\\TA
B = 0.71. As shown in Fig. 6(b), a symmetrical radiation con- 0.6 W\ ’\( =l
ductance can be obtained by adjusting the two electrode position
parameters. The centers of excitation of the DWSF-SPUDT and \ \J]\ \
those of the\ /8 split fingers then become periodically placed. 04 w
The centers of excitation and centers of reflection are shifted \L
according to the normalized metallization thickness and the \
\

a,p

finger-width ratio. Fig. 7 shows the and 3 characteristics as 0.2
a function of the finger-width ratio for different normalized
metallization thickness. In Fig. 7, the normalized metallization \
thicknesses are 1.0%, 1.4%, and 1.8%. Thand 3 values 0 "
clearly depend on the normalized metallization thickness and 1.0 1.5 2.0 25 3.0
the finger-width ratio. It is considered that a change in the
electrode reflection caused by a change in the normalized
metallization thickness or by the finger-width ratio has apy 7. characteristics of the and 3 parameters as a function of the
influence on the phase difference. Thus, the center-to-centeger-width ratio (.2/L1) ath /A = 1.0%,1.4%, and1.8%.

L2/11
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spacing ) between the wide and narrow fingers is changed 1.0
by the finger-width ratio as (3). Here, the electrode position '\
finger parameters satisfy (3). Thevalue has to be less than the 08 g
[ value in order to obtain a symmetrical radiation conductance o 06 \\
D_é_L1+L2_(a+/3)><)\ @ () teccpocct '\\'
) 2 16 '\«
2X ag=a+ 0, a < g 3) 0.2

It is very important for the performance of the
DWSF-SPUDT to determine the optimum electrode finger
positions. In the DWSF-SPUDT, both the narrow and wide L2711
fingers reflect .the acoust.lc we}ve. The correct placement %8 Characteristics of the normalized electritAl) factor as a function of
the electrode finger positions improves the symmetry of the finger-width ratio [2/L1) ath/A = 1.5% . The dashed line indicates the
radiation conductance and then excellent filter characteristigsracteristics of the EWC-SPUDT for comparison.
can be obtained.

1.0 14 1.8 22 2.6 3.0 34

1.0
[ll. COMPUTERANALYSIS OF THEDWSF-SPUDT KTER 08 '\
A. Electricall/Q) Factor of DWSF-SPUDT -
The electrical /@ factor of the transducer is expressed as the o 0.6 \;\
ratio of the radiation conductanc€&’ and the capacitanc&’] 0.4
[9], [10]. Here,w is 27 f, wheref is the frequency T R R
o 0.2
1/Q=—%. ) .
1.0 14 18 22 26 30 34
The electricall /@) factor, defined by the Smith equivalent L2/11
model [10], is proportional to the effective electromechanical @)
coupling constant of the transducers. Thus, as the electri¢al 25
factor increases, the effective electromechanical coupling con- ’
stant becomes large. The efficiency of generating SAWs then 20
becomes large. Therefore, increasing the electii¢dl factor
Eas the effect of Iowerlng the msgruon loss of t.he. SAW filter. o 15 '/”/
or the computer analysis of the filter characteristicg-ma- . o—
trix model was used. The electricgl( factor and directivity of R ST R B .
the DWSF-SPUDT were analyzed as a function of the finger- 0.5
width ratio. The results are compared with those of a conven-
tional EWC-SPUDT. Fig. 8 shows the electricgl() factor 0
versus the finger-width ratio. The electricigl() factor is nor- 10 14 18 22 26 30 34
malized to that of the\/8 split fingers withL2/1.1 = 1.0. L211
The normalized metallization thickness is 1.5%, and the number (b)

of transducer electrode pairs is 100. A metallization ratio j§g. 9. Characteristics of: (a) the normalized conductance and (b) normalized
0.5, which meand.1 + L2 = \/4 for the DWSF-SPUDT. capacitance as a function of the finger-width rati@( L1) ath /X = 1.5%.

In Fig. 8, the dashed line shows the eIectriﬂ:;iQ factor of The dgshed line indicates the characteristics of the EWC-SPUDT for
the conventional EWC—SPUDT under the same conditions. The "o

electricall /@ factor of the DWSF-SPUDT decreases with in- S ) )

creasing the finger-width ratio. In this situation, reflection bg\?\/DWSF—SPQDT is significantly improved with respect to the
the wide fingers is increased, resulting in a reduced radiatis\VC—SPUDT in the region af2/L1 < 2.7.

conductance. The capacitance also becomes larger as the finger . .

ratio increases, due to the capacitance increase of the transDirectivity of the DWSF-SPUDT

ducers. Fig. 9(a) and (b) shows the radiation conductance anéfig. 10 shows the directivity characteristics of the
capacitance as a function of the finger-width ratio, respectivePWSF-SPUDT as a function of the finger-width ratio.
Here, the radiation conductance and capacitance are nornidle normalized metallization thickness is 1.5% and the number
ized to those of a bidirectional transducer witR/.1 = 1.0. of transducer electrode pairs is 100. The dashed line shows the
The dashed lines of this figure represent the characteristicsdifectivity of the EWC-SPUDT under the same conditions.
the EWC-SPUDT. Fig. 8 illustrates the relationship betwedrhe directivity increases with the finger-width ratio, due to
the electricall /@ factor and the finger-width ratio for both increasing reflection by the wide fingers. The EWC-SPUDT
types of SPUDTSs. It is clear that the electridaly factor of has one\/4 width electrode per wavelength, which contributes
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Fig. 10. Characteristics of the directivity as a function of the finger-width ratio
(L2/L1) athA = 1.5%. The dashed line indicates the characteristics of thejg 11 Characteristics of the insertion loss as a function of the finger-width
EWC-SPUDT for comparison. ratio (L2/L1)ath/X = 1.5%. The dashed line indicates the characteristics of
the EWC-SPUDT for comparison.

to the reflections, while the DWSF-SPUDT has two wide

fingers in a wavelength, where the width of the wide finger 3
is \/8 < L2 < \/4. Therefore, the total reflection of 4
the DWSF-SPUDT is larger than that of the EWC-SPUDT.
Therefore, the DWSF-SPUDT with2/L1 > 2.4 gives larger - 3 ‘\\‘
directivity than the equivalent EWC-SPUDT. § , '\0\,,
C. Insertion Loss of the DWSF-SPUDT )
The electricall/@ factor decreases with the finger-width
ratio and the directivity increases with the finger-width ratio. 0
Therefore, regarding the insertion loss, the above two factors 65 10 L5 20 25 3.0
have a tradeoff relation. An optimum finger-width ratio should /A [%]

exist to minimize the insertion loss. Fig. 11 shows the simu-

. . . / . . Fig. 12. Finger-width ratio for both types of SPUDTSs, where the EWC and
lated insertion loss as a function of the finger-width ratio. TWgyS¢ spuDTs have the same electritAl) factor, as a function df /A

SPUDT filters are placed side-by-side with opposing directiv-

ities. The normalized metallization thickness was 1.5% and 5

the number of transducer pairs was 100. In Fig. 11, the dashed

line indicates the insertion loss of the EWC-SPUDT under the 4

same conditions. In the region of the small finger-width ratio, 3

although the electrical /@ factor is Iarge, '_[he d|rect|y|ty is o L e
small. The DWSF-SPUDT does not give improved insertion = 5

loss in this region. In the region of large finger-width ratio,

although the directivity is large, the electrichf @ factor is 1
small. The DWSF-SPUDT also does not improve the insertion
loss in this region. However, in the region with a finger-width
ratioof1.5 < L2/L1 < 2.7,the DWSF-SPUDT canimprove
the insertion loss due to a satisfactory tradeoff between the
glectrlcgl 1/Q fgctor and directivity. In partlculgr, the use OfFig. 13. Finger-width ratio for both types of SPUDTSs, where the EWC and
finger-width ratios ofl.8 < L2/L1 < 2.2 can give excellent DWSF SPUDTSs have the same directivity, as a function ofith.

insertion losses. Our observation of region of loss minimization

allows the design of optimum low-loss filters. the solid line, the DWSF-SPUDT has the larger electriga)
factor compared with that of EWC-SPUDT. The finger-width
ratio, which improves the electrica)/ @ factor, decreases with
The electricall /@) factor and directivity both depend on thethe metallization thickness.
metallization thickness. The optimum finger-width ratio, which Fig. 13 shows the finger-width ratio dependence on the metal-
minimizes the insertion loss, might be different dependingation thickness, under conditions where the DWSF-SPUDT
on the metallization thickness. First, the electritA{) factor and EWC-SPUDT have the same directivity. In the region of the
and the directivity as a function of the metallization thicknedinger-width ratio below the solid line, the DWSF-SPUDT has
have been simulated. Fig. 12 shows the finger-width ratio asamaller directivity compared with that of the EWC-SPUDT.
function of metallization thickness under conditions where thiehe directivity of the DWSF-SPUDT is smaller than that of
DWSF-SPUDT and EWC-SPUDT both have the same eldabe EWC-SPUDT, when the parameters &fe& = 2.5% and
trical 1/@ factor. In the region of the finger-width ratio belowLZ2/L1 < 2.2.

05 10 15 2.0 2.5 3.0
/A [%]

D. Parameter Dependence on the Metallization Thickness
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£, Fig. 16. Experimental results for the filter using the DWSF-SPUDT design.
(a) Performance over a wide frequency span. (b) Expanded span gfpound
@
0 between the electrical /@2 factor and directivity is depen-

dent on the metallization thickness. The insertion loss of the
DWSF-SPUDT is minimized if a finger-width ratio between
the solid and dashed lines is applied to the filters. The minimum
critical geometry is about 0,om, thus, a DWSF-SPUDT using
L2/L1 = 3.0 can be applied up to 400 MHz. At larger metal-
lization thicknessL2/L1 would need to be smaller, as shown
in Fig. 14. In the case of.2/L1 = 2.0, the DWSF-SPUDT
could be used for practical applications up to 500 MHz.

$21[dB]

IV. SIMULATED AND MEASUREDPERFOMANCES OF THEFILTER

0.98 0.99 1.00 1.01 1.02 In this section, the performance of the DWSF-SPUDT has

7 been confirmed through simulation and by experimentation.

(b) Fig. 15 shows the simulation results of the SAW filters for

Fig. 15. Frequency respons$( ) of the filter using: (a) the DWSF-spuDT @ wide-band CDMA application. Fig. 15(a) indicates the
and (b) EWC-SPUDT. insertion loss of the filter using the DWSF-SPUDT, and

Fig. 15(b) indicates the insertion loss of the filter using

Fig. 14 shows the region of the finger-width ratio dependentee EWC-SPUDT. Hereh/A = 1.5% and a metallization
on the metallization thickness in which the DWSF-SPUDTatio is 0.5. A DWSF-SPUDT with a finger-width ratio of
improves the insertion loss. The dashed line indicates the/L1 = 1.8 is used. An impedance matching circuit was
maximum finger-width ratio and the solid line indicates thesed, composed of a series capacitor and parallel inductor.
minimum finger-width ratio. Between the two lines, the inThe source and load impedances were(50The Q-value of
sertion loss is smaller than that of EWC-SPUDT. The regidhe inductors used for the simulations was 35. The insertion
in Fig. 14 is different from those with the finger-width ratiodoss of the DWSF-SPUDT filter is 9.7 dB. On the other hand,
used in Figs. 12 and 13. This means that the tradeoff relatithre insertion loss of the EWC-SPUDT filter is 10.7 dB. The
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insertion loss of the filters originates due to the conversion[4] T.Kodama, H. Kawabata, Y. Yasuhara, and H. Sato, “Design of low-loss

loss of electromechanical energy, directivity loss, propagation SAW filters employing distributed acoustic reflection transducers,” in
| hmic | f th lectrod d tchi | Th Proc. IEEE Ultrason. Symp1986, pp. 59-64.
0ss, ohmic loss of the electrodes, and matching 10Ss. 1N€s5) ¢ s Hartmann and B. P. Abbott, “Overview of design challenges for

DWSF-SPUDT was designed using the tradeoff relation  single phase unidirectional SAW filters,” ®roc. IEEE Ultrason. Symp.

between thel/Q factor and directivity. With the particular 1989, pp. 79-89. . o

desi d. th ion | . d b[q_] B. J. Hunsinger and K. Hanma, “Surface acoustic wave device with re-
e5|g_n pa_rgmeters used, the conversion loss was improved, bul' fiection suppression,” U.S. Patent 4 162 465, July 24, 1979.

the directivity loss was degraded. As the result of the present7] p. V. wright, D. F. Thompson, and R. E. Chang, “Single-phase unidi-

simulations. it is confirmed that the DWSF=SPUDT filter can rectional transducers employing uniform-width dithered electrodes,” in
. h T . | Proc. IEEE Ultrason. Symp1995, pp. 27-32.
Improve the Insertion loss. K. Hashimoto, Surface Acoustic Wave Devices in Telecommunica-

8
The performance of an experimental DWSF-SPUDT tions Berlin, Germany: Springer-Verlag, 2000.
filter constructed on an ST-cut quartz substrate is shown inl®! lcjéssiE'g /gﬂrr?;?;ré'amsuTr;aecﬁl_evt\@r?andEs)?SeC\ﬁZr 12%5 Signal  Pro-
Fig. 16. The parameters used and the design of the filter afgo; p v, “wright, “A uniformly-sampled single-phase unidirectional
the same as in the simulation used for Fig. 15. The filter  transducer with sub-nyquist spatial sampling,Piroc. IEEE Ultrason.

size is a 6 mmx 3.5 mm package. Fig. 16(a) shows the __ Symp.1992, pp. 61-66. .
11] W. R. Smith, H. M. Gerard, J. H. Collins, and T. M. Reeder, “Anal-

performance over a wide frequency s_pan, .Wh”e Flg. 16(b5 ysis of interdigital surface wave transducers by use of an equivalent cir-
shows an expanded span aroufad The insertion loss is 9.4 cuit model,” [EEE Trans. Microwave Theory Teghvol. MTT-17, pp.
dB. A passband ripple is very flat, which is less than 1 dB in__ 856-864, Nov. 1969. o o
3.84-MHz bandwidth. and a high reiection near passband ha\}éZ] H. Nakamura, T. Yamada, T. Igaki, K. Nishimura, T. Ishizaki, and K.

- z wiath, Igh rejecton p Ogawa, “A practical SPUDT design for SAW filters with different-width
been realized. The passband characteristic was flat. Therefore, split-finger interdigital transducers,” presented at tREE Ultrason.
an excellent filter performance using the DWSF-SPUDT is  Symp.2000.
obtained. These results agree well with the simulation results,

as shown in Fig. 16.
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